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We investigate theoretically the nonlinear state of ideal straight rolls in the Rayleigh–
Bénard system of a fluid layer heated from below with a porous medium using a
Galerkin method. Applying the Oberbeck–Boussinesq approximation, binary mixtures
with positive separation ratio are studied and compared with one-component fluids.
Our results for the structural properties of roll convection resemble qualitatively the
situation in the Rayleigh–Bénard system without porous medium except for the fact
that the streamlines of binary mixtures are deformed in the so-called Soret regime.
The deformation of the streamlines is explained by means of the Darcy equation
which is used to describe the transport of momentum. In addition to the properties
of the rolls, their stability against arbitrary infinitesimal perturbations is investigated.
We compute stability balloons for the pure fluid case as well as for a wide parameter
range of Lewis numbers and separation ratios that are typical for binary gas and
fluid mixtures. The stability regions of rolls are found to be restricted by a crossroll,
a zigzag and a new type of oscillatory instability mechanism, which can be related to
the crossroll mechanism.

1. Introduction
The Rayleigh–Bénard system is one of the classical set-ups and possibly the most

popular one to study pattern formation and hydrodynamic instabilities under well-
controlled conditions. The system consists of a fluid layer bounded by two plates
and is heated from below. If the temperature difference between the plates exceeds a
critical value, the fluid leaves its static state and thermal convection sets in. Under
appropriate conditions, the fluid flow forms a regular pattern, for example a state of
ideal straight rolls (ISR), also called Bénard rolls or steady overtuning convection
(SOC).

Over the last few decades, the roll convection and, in particular, the instability
mechanisms, which tend to limit the stability region of the ideal roll state, have been
investigated in detail experimentally (see Busse & Whitehead 1971; Croquette &
Williams 1989) as well as theoretically (see Schlüter, Lortz & Busse 1965; Busse &
Clever 1979; Bolton & Busse 1985; Bolton, Busse & Clever 1986; Clever & Busse
1990). One main result of this research is that the region of rolls, which are stable
against infinitesimal perturbations, is restricted by certain instability mechanisms, for
instance the zigzag, the skewed varicose, the Eckhaus and the crossroll mechanism.
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This also remains valid if the fluid between both the plates saturates a porous medium,
a case applying to many natural and industrial processes (see Vafai 2005 or Nield &
Bejan 2006 for an overview). For a porous medium, De La Torre Juárez & Busse (1995)
investigated theoretically the stability of rolls against two-dimensional perturbations
and found the Eckhaus and an oscillatory instability mechanism. Straus (1974) did the
same but allowed for three-dimensional perturbations and found a zigzag as well as
a crossroll mechanism. These investigations were complemented by the experimental
observation of roll convection in porous media by Shattuck et al. (1997) and Howle,
Behringer & Georgiadis (1997).

The aforementioned research was carried out for a one-component, i.e. a pure
fluid. However, numerous applications are known in which the fluid has to be
treated as a binary mixture consisting of two different fluids (see for example Platten
2006). Especially, if the binary mixture shows a non-vanishing Soret effect, i.e. if
concentration currents are driven by temperature gradients, the dynamics of the
system are expected to change due to a coupling of the temperature field into
the concentration field. For the classical Rayleigh–Bénard system without porous
medium, there has been a large body of work dealing with binary mixtures
under the influence of the Soret effect (Le Gal, Pocheau & Croquette 1985;
Walden et al. 1985; Ahlers & Rehberg 1986; Kolodner et al. 1986; Cross & Kim
1988; Knobloch & Moore 1988; Barten et al. 1989; Eaton et al. 1991; Schöpf &
Zimmermann 1993; Barten et al. 1995; Dominguez-Lerma, Ahlers & Cannell 1995;
Touiri, Platten & Chavepeyer 1996; Fütterer & Lücke 2002; Huke. & Lücke 2002).
In particular, the roll convection and the corresponding stability mechanisms are
well known (see Huke et al. 2000). For the system with porous medium, however,
the standard of knowledge is much less developed, although there has been some
work concerning the stability of the ground state and monocellular flow by Charrier-
Mojtabi, Elhajjar & Mojtabi (2007), Elhajjar, Charrier-Mojtabi & Mojtabi (2008) and
Sovran, Charrier-Mojtabi & Mojtabi (2001).

With this paper, we aim at extending the knowledge about flow patterns of binary
mixtures in porous media by analysing the structural properties as well as the
stability of the Bénard rolls. In doing this, we restrict ourselves to a positive Soret
coupling in which the Soret effect destabilizes the ground state. The paper is organized
as follows. In § 2 we will briefly explain the basic equations of the system, the
Galerkin method that we have used for numerical computations, the ground state
and its stability. In § 3 we discuss the properties of roll convection by investigating
the structure of the fields, the advective heat transport and the mixing. Section 4
contains the main results of our paper. Here, we represent the stability boundaries
of the Bénard rolls for a pure fluid as well as for binary mixtures and compare
the former ones with the known results. In § 5 we conclude with a summary of our
results.

2. Foundations
2.1. System and basic equations

We consider a horizontal layer of a porous medium filled with a pure fluid or a binary
mixture in a homogeneous gravitational field, g = −gez. The layer has thickness d

and a vertical temperature gradient is imposed by fixing the temperature

T = T0 ± �T

2
at z = ∓d

2
, (2.1)
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which can be realized in experiments by using highly conducting plates. Here, T0 is
the mean temperature of the layer and we assume �T > 0, i.e. the lower plate has
a higher temperature than the upper one. Moreover, we consider the plates to be
infinitely extended, rigid and impermeable. The porous medium is treated as isotropic
and homogeneous. Furthermore, we assume local thermal equilibrium between the
fluid and the porous medium such that there is no heat transfer between both phases.

Convection is characterized by the fields of temperature T , the Darcy velocity
v (also called seepage velocity), mass concentration C of the lighter component,
total mass density ρ = ρ1 + ρ2 and pressure P . Applying the Oberbeck–Boussinesq
approximation, we assume the dynamic viscosity, the thermal expansion coefficients
and the heat capacities to be constant and equal to their values at the spatial averages
T0, C0, P0 of the thermodynamic variables. Moreover, we neglect effects like radiation
or the generation of heat due to friction between the fluid and the porous medium.
For binary mixtures, the Soret effect can play an important role. We incorporate this
effect in our model, which describes the generation of concentration currents due to
temperature variations. Then, the balance equations for our system read according to
Nield & Bejan (2006):

∇ · v = 0, (2.2a)

caρ0∂tv = −∇P − η

K
v + ρ0[1 + βT T + βCC]gez, (2.2b)

Ctot∂tT + Cf (v · ∇)T = λtot∇2T , (2.2c)

φ∂tC + (v · ∇)C = Dtot∇2C + Dtot

kT

T0

∇2T , (2.2d )

Here, ρ0 is the mean density of the fluid, η is the dynamic viscosity, βT (βC) is the
thermal (solutal) expansion coefficient of the fluid and K is the permeability of the
porous medium. Note that C∗ denotes the heat capacity per unit volume according to
its subscript f , s or tot of the fluid, the solid matrix or of the total medium (fluid and
solid matrix). The heat capacities per unit volume can be connected via the porosity
φ of the porous medium, by the relation Ctot = φCf + (1 − φ)Cs . The same holds
true for the thermal conductivities λf , λs and λtot . The term Dtot is the concentration
diffusivity of the total medium and is equal to φD whereas D is the concentration
diffusivity of the fluid. Note that kT is the thermodiffusion ratio that characterizes the
strength of the Soret effect. The correction factor ca emerges in front of ∂t u to bring
the Darcy equation (2.2b) in agreement with experimental results (see Nield & Bejan
2006). Since the porous medium is assumed to be isotropic and homogeneous, ca is a
scalar.

In the basic equations (2.2) we scale lengths by d , time by the vertical
diffusion time (d2Ctot )/(λtot ), temperature by (λtotη)/(Cf KdβT gρ0), concentration by
(λtotη)/(Cf KdβCgρ0) and pressure by (λtotη)/(Cf K). Moreover, we introduce the
reduced deviations of the velocity u =(u, v, w), temperature θ , concentration c and
pressure field p from the conductive state thus obtaining the following set of balance
equations:

∇ · u = 0, (2.3a)

γa∂tu = −∇p − u + (θ + c)ez, (2.3b)

∂tθ + (u · ∇)θ = Rw + ∇2θ, (2.3c)

φ∗∂tc + (u · ∇)c = Rψw + L
(
∇2c − ψ∇2θ

)
. (2.3d )
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The normalized porosity φ∗ = φCf /Ctot as well as the correction factor
γa = ((Kλtotη)/(d2Ctotρ0))ca are scalars for an isotropic and homogeneous porous
medium. Note that φ∗ can have values in the interval [0, 1] whereas γa is very small
for usual porous materials (Nield & Bejan 2006). Because of the smallness of γa , the
time-derivative term in the momentum equation is often neglected (see for example
Sovran et al. 2001 and Elhajjar et al. 2008). However, we retain this term since
it is—according to Vadasz & Olek (1999) or Vadasz & Olek (2000)—essential for
certain stability analyses. Note that φ∗ also appears only in front of a time derivative.
Therefore, the correction factor and the normalized porosity can play a role for
time-dependent phenomena only.

Via the concentration diffusivity Dtot , the Lewis number L is defined by

L =
DtotφCf

λtot

, (2.4)

and, therefore, compares the time scales of concentration and heat diffusion. Note
that the Lewis number as defined here is the inverse of the Lewis number Le as
defined by Nield & Bejan (2006). The Rayleigh–Darcy number is given by

R =
ρ0gβT KCf d

λtotη
�T (2.5)

and measures the thermal driving. The separation ratio

ψ = − βC

βT T0

kT (2.6)

is proportional to the thermodiffusion ratio kT , thus incorporating the Soret effect
that emerges via −Lψ∇2θ and the term Rψw in the concentration balance equation
(2.3d ). In this paper, we cover mainly separation ratios from 0 to 0.5, which are
typical for alcohol–water mixtures at high alcohol concentration (30 %–80 %) and
many gas mixtures, such as Ne–CO2, He–Xe, H2–Xe and Ne–Ar (see Liu & Ahlers
1997). It means in particular that we restrict ourselves to a positive Soret coupling
(ψ > 0), where the lighter component of the mixture is driven into the direction of
higher temperature.

In the momentum equation (2.3b), which is deduced from Darcy’s law, advective
transport and diffusion of momentum are neglected. Instead, we take into account
the relaxation term −u describing the friction between the fluid and the porous
matrix, which dominates the aforementioned mechanisms at low Reynolds numbers
(Re = O(1)). Thereby, to define the Reynolds number of a flow through a porous
medium, the average radius of the pores is chosen as the characteristic length scale.

Since the fluid is assumed to be incompressible, we can write the velocity field u as

u = ∇ × ∇ × Φez + ∇ × Ψ ez, (2.7)

which automatically fulfils the mass balance (2.3a). To derive equations for the
potentials Φ and Ψ , one can apply the curl to the momentum balance equation
(2.3b) once or twice, respectively, and take into account only the third component of
the obtained equations. This also eliminates the pressure term. To derive boundary
conditions for Φ , we assume that there is no external pressure gradient that causes a
meanflow U (z, t) = 〈u(x, z, t)〉x , with 〈·〉x being the spatial average in the x direction.
Averaging (2.2b) over x shows that any meanflow will decay on the time scale γa . The
same can be demonstrated for Ψ . Not being interested in fast transients, we assume
that U =Ψ = 0.
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At the impermeable plates, the vertical concentration current vanishes, i.e. ∂z(c −
ψθ) = 0 for ±(1/2). To avoid this coupling of the fields in the boundary conditions,
we introduce in the next step the field

ζ = c − ψθ. (2.8)

The corresponding balance equation for ζ can be directly derived by combining (2.3c)
and (2.3d ). Altogether, the new balance equations are

γa∂t∇2�xyΦ = −∇2�xyΦ − �xy(θ + c), (2.9a)

∂tθ + (u · ∇)θ = Rw + ∇2θ, (2.9b)

φ∗∂tζ + (u · ∇) ζ +
(
1 − φ∗) (u · ∇) θ =

(
φ∗ − 1

)
Rψ�xyΦ + L∇2ζ − φ∗ψ∇2θ, (2.9c)

with �xy:= ∂2
x + ∂2

y and the boundary conditions

0 = Φ = θ = ∂zζ at z = ±1

2
. (2.10)

2.2. Numerical method

To obtain roll solutions, we used a Galerkin method with the following ansatz for
the fields X = Φ, θ, ζ :

X(x, z) =
∑
m,n

Xmncos(mkx)fn(z). (2.11)

This ansatz is almost the same as in Huke et al. (2000), where it is described in more
detail.
The difference is that ψ ≡ 0 and that Φ is expanded in the vertical direction by

Φ: fn(z) =

{√
2 cos(nπz), if n = 1, 3, 5...,

√
2 sin(nπz), if n = 2, 4, 6...

(2.12)

to satisfy the boundary condition (2.10). Rolls are even in x with an appropriate
choice of the origin and fulfil the so-called mirror-glide symmetry (see Veronis 1966).
This allows to simplify the ansatz (2.11) by dropping half the modes. In the following
computations, all θ and ζ modes with n + m>N and all Φ modes with n + m > N/2
are neglected, where we choose N = 24, if not otherwise specified.
The stability of rolls against arbitrary infinitesimal perturbations is tested by
expanding the perturbations as follows:

δX(x, y, z, t) =
∑
m,n

δXmne
st+i[(d−mk)x+by]fn(z), (2.13)

where the ansatz is truncated in a way consistent with the truncation of (2.11). Except
for the differences pointed out already, this ansatz and the corresponding method
can be found in Huke et al. (2000). The symmetries of the underlying roll pattern
allow for b = 0 to divide the perturbations into perturbations that are even or odd
in the x direction and into G as well as G perturbations, which reduce to symmetric
and antisymmetric perturbations under the mirror glide operation in the special case
d = b = 0. Moreover, because of these symmetries, only perturbations with b > 0 and
d ∈ [0, k/2) have to be tested.

2.3. Ground state and linear stability analysis

The linear stability problem for binary mixtures of the system under consideration has
already been investigated by Sovran et al. (2001), Charrier-Mojtabi et al. (2007) and
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Elhajjar et al. (2008). Having used an analytical method and a Galerkin expansion,
we obtain results in good agreement with the former. In the following, we are going
to review the most important facts concerning the conductive state as a preparation
and introduction for the subsequent nonlinear analysis.

In the ground state, the fluid rests and heat is transported only by diffusion. The
temperature difference �T between the plates imposes a linear temperature profile as
follows:

Tcond (z) = T0 − �T

d
z. (2.14)

Because of the Soret effect, this temperature gradient generates a linear concentration
profile of the form:

Ccond (z) = C0 +
kT �T

T0d
z. (2.15)

The pressure distribution in the conductive state is given by

pcond (z) = p0 + ρg

[
βT

(
T0 − �T

2d
z

)
+ βC

(
C0 − kT �T

2dT0

z

)]
z, (2.16)

which can be calculated from the concentration and temperature field via the
momentum equation (2.3b). If there is a positive Soret coupling as investigated here,
the lighter component of the binary fluid is driven to the lower plate. This increases
the density difference between the plates and therefore destabilizes the ground state.

The destabilizing effect is illustrated in figure 1, where the critical Rayleigh–
Darcy number Rc as well as the corresponding critical wavenumber kc is plotted
against the separation ratio ψ for several L. For the pure fluid (ψ = 0), the ground
state loses its stability above R0

c = 4π2 ≈ 39.48 against stationary perturbations of a
lateral wavenumber k0

c = π. By contrast, the ground state of binary mixtures becomes
unstable for a thermal driving weaker than R0

c and the critical Rayleigh–Darcy number
decreases with stronger Soret effect, i.e. growing ψ . In particular, if the concentration
gradients are slowly diffused away, i.e. for small Lewis numbers, the destabilization is
especially strong. The corresponding critical perturbations remain stationary but their
wavelength kc goes to zero for large ψ . For example, at L = 0.5, one finds kc = 0 for
about ψ � 1.759 which is close to the theoretical value ψ � 1/(40/(51L) − 1) = 1.7586
obtained by Sovran et al. (2001). In experiments, the critical wavelength will then be
as large as the finite size of the convection cell allows.

3. Properties of the roll convection
3.1. Structure of the fields

To understand the roll convection of a binary mixture from a qualitative point of
view, one can study the temperature and concentration distribution as well as the
flow field. In what follows, we give such a qualitative description in figure 2, in which
the streamlines, the concentration and temperature field along with the lateral profiles
of the fields at midheight z = 0 are shown for several values of thermal driving. Since
the behaviour remains in principle the same over a wide range of wavenumbers, we
fix the wavenumber to k = k0

c = π. The chosen parameters, L = 0.01, ψ =0.3, can be
realized easily in experiments with alcohol–water mixtures. In this case, the critical
Rayleigh–Darcy number Rc is reduced to about 0.39. Figure 2(a) displays the fields
over one periodicity interval in the x direction for R = 10. This value lies in the
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Figure 1. In the upper (lower) part, the critical Rayleigh–Darcy number of the ground state
(corresponding critical wavenumber) is plotted against the separation ratio ψ for several L.
If the thermal driving is weaker than the critical value, the conductive state is stable against
arbitrary infinitesimal perturbations, otherwise at least one unstable mode exists.

so-called Soret regime, in which convection is dominated by the Soret effect. The
temperature field deviates only marginally from its linear profile in the ground state,
i.e. advective heat transport is weak. In contrast, the concentration field is already
strongly modulated and forms plume-like structures since the slow concentration
diffusion (L � 1) allows for a perturbation of the linear profile already for weak
advection. The anharmonicity of the concentration field becomes obvious by looking
at the lower part of figure 2, where the lateral profile of the concentration field is
plotted versus x at midheight, z = 0. The velocity field, represented by its z component
at midheight, is also anharmonic and the streamlines that illustrate the roll-like flow
are deformed.
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Figure 2. Structure of roll convection. Shown are from top to bottom the fields of temperature
and concentration, the streamlines as well as the lateral profiles at midheight, z = 0. Parameters
are ψ =0.3, L =0.01, k = π.

Figure 2(b) refers to R =50. This value lies in the so-called Rayleigh regime
where convection would set in also without an operating Soret effect. Here, a
stronger modulation of the temperature field can be seen because of an increased
advective heat transport. Nevertheless, the temperature field is almost harmonic
as seen from the horizontal variation of T at midheight. The concentration field
shows the characteristic boundary-layer behaviour: The binary fluid is well mixed
in the bulk whereas pronounced concentration gradients exist at the plates and the
roll boundaries. The better mixing is caused by the larger velocity of the fluid. The
corresponding streamlines reflect the roll-like flow and are almost harmonic, indicating
that the anharmonic behaviour of the velocity for R = 10 is induced by the Soret
effect. This conclusion has been strengthened when we simulated the streamlines of
a pure fluid and did not find any deformation provided the thermal driving was not
too strong. Note, furthermore, that the deformation of the streamlines in the Soret
regime seems to be generic for the system with porous medium. This can be explained
by the replacement of the momentum diffusion term ∇2u (contained in the Navier–
Stokes equations) by the relaxation term −u in our momentum balance equation
(2.3b). In the clear fluid, i.e. in the system without porous medium, momentum
diffusion tends to smooth the spatial anharmonicity of the velocity field caused by
the very anharmonic concentration field. Since the relaxation term −u in (2.3b)
does not contain spatial derivatives, it does not provide spatial smoothing and the
anharmonicity of the concentration field is imposed via the buoyancy term onto the
velocity field. Considering that the buoyancy at R = 50 is caused rather by the almost
harmonic temperature field than by the concentration field, it becomes clear why the
streamlines are barely deformed.
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When nonlinear effects are amplified further by increasing the heating rate, plume-
like structures also appear in the temperature field and the concentration boundary
layers become thinner. We can see this in figure 2(c), where R has reached a value of
100. The streamlines are now deformed again, this time because the temperature field
has become anharmonic by the intensive thermal driving.

3.2. Nusselt and mixing numbers

To describe the advective heat transport due to roll convection quantitatively, we
make use of the Nusselt number Nu. The Nusselt number is given by

Nu:=
〈jtot,z〉
〈jcond,z〉

, (3.1)

where jtot,z denotes the total vertical heat current density; jcond ,z the vertical heat
current density in the conductive state and 〈·〉 denotes the lateral average. The
Nusselt number at the plates can be computed from the modes obtained by our
Galerkin method with truncation index N as follows:

Nu = 1 − 2
√

2π

R

N∑
n=1

(−1)nnθ02n. (3.2)

Note that the Nusselt number does not actually depend on the z position in a
stationary state of convection as the rolls are.

In figure 3, we compare Nusselt numbers of the pure fluid, which we have
found to be in good agreement with the results from De La Torre Juárez &
Busse (1995), with Nusselt numbers of binary mixtures. In the ground state, Nu
is equal to 1, since heat is transported only by diffusion. After the roll convection
has started, i.e. R has exceeded Rc, the Nusselt number and simultaneously the
advective heat transport increase monotonically with R. For a given Rayleigh–
Darcy number, Nu is always larger for binary mixtures with ψ > 0 than for the
pure fluid, as the Soret effect causes a concentration gradient giving rise to a more
pronounced buoyancy and thus a stronger convection. For the same reason, the
Nusselt number grows when the Soret effect becomes As the advective mixing is
strong in the Rayleigh region, the Nusselt number of a binary mixture with small L

approaches the one of the pure fluid there. However, when L becomes larger, i.e. when
concentration diffusion is fast, the advective mixing does not succeed to mix away the
concentration gradient and the differences in Nu to the pure fluid case remain more
significant.

We have also found these tendencies for wavenumbers that differ from the
wavenumber k = π chosen in figure 3, albeit convection becomes weaker and Nu
decreases if the wavenumber gets too large or too small.

The mixing of a binary fluid can be described by the so-called mixing number M ,
which is defined by the normalized variance of the concentration field:

M =

√
〈C2〉 − 〈C〉2√

〈C2
cond 〉 − 〈Ccond 〉2

, (3.3)

where Ccond denotes the concentration field in the conductive state and 〈·〉 denotes
the spatial average. From M = 1, which is the value of the mixing number in
the ground state by definition, it decreases when roll convection sets in and the
components of the binary fluid are mixed. According to figure 4, the mixing
number decreases only slightly in the Rayleigh regime when the thermal driving
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Figure 3. Nusselt number Nu vs. Rayleigh–Darcy number R. The parameters are L = 0.5
(a) and ψ = 0.1 (b). In each case, the wavenumber is k = π. PF denotes the pure fluid.

gets stronger. In other words, one cannot mix the fluid components perfectly by
increasing R. The reason is that the fluid is already well mixed in the Rayleigh
regime except for the fluid layers near to the plates and at the roll boundaries,
whose thickness depends barely on R. Instead, the boundary-layer behaviour in
the Rayleigh region depends mainly on the Lewis number of the mixture such that the
mixing number is reduced when L is lowered. The latter facts are also valid in the
clear fluid case and can be explained using concentration boundary-layer theory in
analogy to Hollinger (1996). A larger separation ratio improves the mixing mainly
in the Soret regime whereas the influence of ψ in the Rayleigh regime is rather
weak.
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Figure 4. Mixing number M vs. R. The parameters are k = π and L = 0.5 (a), ψ = 0.1 (b).

4. Stability of the rolls
4.1. Stability boundaries for the pure fluid

Using the Galerkin method from § 2.2 with N = 24, we have tested the roll structure
against infinitesimal perturbations of arbitrary wavenumber. For the pure fluid,
similar stability analyses have been carried out by De La Torre Juárez & Busse
(1995) and Straus (1974). In agreement with their results, we find that only two
instability mechanisms, the zigzag and the crossroll, limit the region of stable rolls.
The corresponding stability boundaries in the (R, k) parameter space are shown in
figure 5. Below, we review briefly the important instability mechanisms and compare
our results with those of Straus and Juárez. If not otherwise specified, the instabilities
are related to a real eigenvalue, i.e. the corresponding stability boundary does not
depend on φ∗ or γa .
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Figure 5. (a) Stability boundaries in the (k, R) plane for the pure fluid. The Eckhaus boundary
is denoted by the dotted curve, the zigzag boundary is denoted by the dash-dotted one, the
crossroll boundary is denoted by the solid one and the neutral curve is denoted by the dashed
one. The S marks the region of stable rolls. (b) bmax on the crossroll boundary.

4.1.1. Zigzag instability

The zigzag (ZZ) boundary, denoted by the dash-dotted line in figure 5, restricts the
region of stable rolls on the small-k side; if the rolls are zigzag-unstable, a new set
of rolls with a larger wavenumber begins to grow. The ZZ perturbations belong to
the subclass of G-perturbations that are odd in the x direction. They have the same
periodicity in the x direction as the existing pattern. Consequently, we find the ZZ
instability for d = 0. It is sufficient to check the stability only for a single point on the
b axis near b = 0 in order to determine whether a roll state is ZZ-stable or not (for
further details, see Bolton et al. 1986).



Roll convection of binary fluid mixtures in porous media 177

Compared with the ZZ boundary calculated by Straus, ours is much more restrictive.
At R = 55 for example, rolls should be unstable for k < 3.046 according to our
computations, whereas Straus states the same for k < 2.5 using an analytical criterion.

4.1.2. Crossroll instability

According to figure 5, the region of stable rolls is mainly restricted by the crossroll
(CR) boundary given by the solid line. Thus, rolls with either too large or too small
wavenumbers are destabilized by the CR instability, which causes the growth of
rolls perpendicular to the existing pattern. Above R ≈ 342 =: R0

h, the CR mechanism
destabilizes the rolls independent of their wavenumber. The CR perturbations are
even in the x direction and belong to the subclass of G-perturbations. They have
the same periodicity in the x direction as the original rolls so that we find the CR
instability for d = 0. By contrast, the parameter b, which represents the wavenumber
of the CR perturbation perpendicular to the roll pattern, cannot be fixed to test
whether rolls are CR-stable. Instead, to decide this, one has to find the value bmax

where the most critical eigenvalue reaches its maximum by applying an interpolation
procedure. In figure 5, the value of bmax on the CR boundary is plotted as a function
of k, whereby the upper section of bmax(k) belongs to the part of the CR boundary
at higher R. Near the onset, bmax is close to k0

c . For larger R, bmax is generally larger
since the whole stability region shifts to larger k.

The above-mentioned value R0
h ≈ 342 differs from the one obtained by Straus,

who states R0
h ≈ 380. Furthermore, our CR boundary is again more restrictive on

the small-k side: According to our calculations, rolls with a wavenumber k < 2.28
are CR-unstable whereas Straus finds CR-stable rolls with k ≈ 1.8. However, these
disagreements decrease when we lower our truncation parameter N and thus we
conclude that our results are more precise than those obtained by Straus.

4.1.3. Eckhaus instability

The Eckhaus (EC) boundary, denoted by the dotted line in figure 5, lies below the
CR boundary for all wavenumbers, i.e. the EC perturbations can only grow where
the rolls are already CR-unstable. The EC instability tends to establish rolls with a
better wavenumber in the direction of the wavevector of the original roll state. The
corresponding perturbations are even in the x direction and fall into the subclass of
G perturbations. As purely two-dimensional perturbations, they are found at b = 0.
Conveniently, the question of EC stability can be answered by investigating a single
point on the d axis near d = 0 (see De La Torre Juárez & Busse 1995). Our result for
the EC boundary agrees well with the one obtained by Juárez.

Since we have found no other instability mechanisms inside the ZZ- and CR-stable
regions, we conclude that within this stability region, rolls are stable against arbitrary
infinitesimal perturbations. In particular, rolls are stable at the critical point (R0

c , k
0
c ).

Note that the stability region discussed above is similar to the stability balloon of
the clear fluid at large Prandtl numbers for no-slip boundary conditions computed
by Busse & Clever (1979) as well as for free-slip boundary conditions computed
by Bolton & Busse (1985): In each of the three cases, the region of stable rolls is
restricted by the ZZ boundary on the small-k side and otherwise by the CR boundary.
The similarity of the stability balloons can be understood using a heuristic argument.
The influence of the advective term and the time derivative term in the Navier–Stokes
equation becomes small for large Prandtl numbers so that it resembles the Darcy
equation for small γa except for the fact that the relaxation term in (2.3b) is replaced
by a diffusion term.
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Figure 6. Stability boundaries in the (k, R) plane for several combinations of L and ψ below
R = 80. The EC boundary is denoted by the dotted curve, the ZZ boundary is denoted by
the dash-dotted one, the CR boundary is denoted by the solid one and the neutral curve is
denoted by the dashed one. The S marks the region of stable rolls.

4.2. Stability boundaries for binary mixtures

Figure 6 shows the EC, ZZ and CR boundaries for binary mixtures below R = 80.
We cover a range of separation ratios ranging from 0.01 to 0.4 and Lewis numbers
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ranging from 0.1 to 1. Again, the stability boundaries are found to be in qualitative
agreement with those of the clear fluid for large Prandtl numbers, computed by
Huke et al. (2000). In the Rayleigh regime, the ZZ boundary RZZ(k) lies close to the
corresponding line of the pure fluid and shifts slightly to smaller k if ψ is increased.
At the transition between the Rayleigh and the Soret region, RZZ(k), bends towards
small k (see, for instance, L =0.5 and ψ = 0.05). By decreasing R further on, the
ZZ boundary terminates with a finite slope at the critical point (Rc, kc). The most
important fact regarding the EC boundary is that it lies beyond the CR boundary for
all investigated (L, ψ) combinations. Therefore, the EC instability occurs only where
the rolls are already unstable to CR perturbations. For L =1, which is a typical value
for gas mixtures, the CR boundary is still connected to the critical point (Rc, kc).
However, for smaller L and sufficiently large ψ , the CR boundary detaches from the
neutral curve. In this case, rolls are no longer a stable form of convection at the
onset. We observed square convection at the onset instead as it has also been seen in
the clear fluid case by Dominguez-Lerma et al. (1995), Huke et al. (2000), Müller &
Lücke (1988) and Moses & Steinberg (1991).

The whole (R, k) regions of stable rolls are shown in figure 7. Inside the closed
curve defined by the CR boundary, rolls are stable to CR perturbations. For large ψ

and small L, the CR boundary shifts to larger wavenumbers and is the only stability
boundary limiting the region of stable rolls (see L = 0.1 and ψ = 0.4). Otherwise, the
CR-stable region is intersected by the ZZ boundary on the small-k side. For the
presented parameter range, we have detected no other instability mechanisms inside
the ZZ- and CR-stable regions. Thus, the regime of stable rolls is limited exclusively
by the ZZ and the CR boundaries in analogy to the pure fluid.

The CR boundary defines the lowest Rayleigh–Darcy number Rl as well as the
highest one Rh, for which rolls are stable. As seen from figure 8, Rh decreases when
the separation ratio grows, whereas Rl decreases with ψ as soon as the CR boundary
becomes detached from the neutral curve. Thus, the region of stable rolls shrinks with
increasing Soret effect. Note that this is also valid where the CR boundary is not
detached from the ground state and Rl is given by Rc. Considering the curvature of
Rl(ψ) and Rh(ψ), it seems that CR-stable rolls cannot exist for too large separation
ratios. This conjecture is also supported by further numerical tests: We have found
no CR-stable rolls for the parameters L = 0.1 and ψ = 0.5 on an equidistant grid in
the (R, k) plane with �R = 5 and �k =0.05.

The wavenumber kl (kh) of the marginally stable rolls at Rl (Rh) is shown in the
second row of figure 8 as solid (dotted) lines. Note that kl is equal to kc when
the CR boundary is connected to the neutral curve. By increasing ψ , kh decreases
whereas kl grows when the CR boundary is detached from the neutral curve. The
same trend holds for the wavenumber bl (bh) in the y direction of the most critical
CR perturbation at Rl, kl (Rh, kh), which are displayed as solid (dotted) lines in the
third row of figure 8. While bl lies near to kl and bh is similar to kh, they are not
exactly the same.

4.3. Stability boundaries for binary mixtures with small L

Next, we discuss the choice L =0.01, which is a typical value for many kinds of
liquids. Exemplarily, for ψ = 0.01, the stability balloon is shown in figure 9. Whereas
the EC, CR and ZZ boundaries remain qualitatively the same as for larger L, a new
stability boundary marked by a dash-double-dotted line precedes the CR boundary for
sufficiently large R. The corresponding eigenvalue reaches its maximum for d = 0 but
for different b in each point of the stability boundary. Moreover, the corresponding
perturbations fall into the subclass of G perturbations and are even in the x direction.
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Figure 7. Full stability balloons in the (k, R) plane for several combinations of L and ψ .
The curve style is the same as in figure 6.

As we can see, this new boundary is rather similar to the CR boundary, and it ends on
the latter at smaller values of R. However, the difference between the CR boundary
and the new boundary is that the corresponding eigenvalue of the latter is complex,
i.e. the boundary corresponds to an oscillatory perturbation.
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In order to clarify the relationship between this new boundary and the CR
boundary, figure 10 shows the real parts of the two eigenvalues with the greatest
real parts versus b for different wavenumbers k at parameters L = 0.01, ψ = 0.01,
R = 290, φ∗ = 1 and φ∗ = 0.7. For φ∗ = 1, both eigenvalues become positive as a
complex pair and thus the corresponding stability boundary is oscillatory. But if
φ∗ =0.7, the eigenvalues split up while they are still negative and only the larger one
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Figure 9. Full stability balloons in the (k, R) plane for L = 0.01 and ψ = 0.01. The curve
style is the same as in figure 6, except that the new OCR boundary is denoted by the
dashed-double-dotted line.

of the two now real eigenvalues becomes positive. Thus, in this case, the corresponding
stability boundary is stationary. Both the new and the CR boundaries should thus be
understood as one boundary. We call the oscillatory part oscillatory crossroll (OCR)
boundary.

As a time-dependent phenomenon, the OCR boundary can depend on φ∗ and γa .
With decreasing φ∗, the OCR boundary moves towards the CR boundary and the R

values increase at which the boundary changes from stationary to oscillatory until the
boundary is stationary at all R for sufficiently small φ∗. When γa is varied between
10−4 and 0, the stability boundaries change negligibly. For example, at fixed R, the
wavenumbers change less than 0.1 %. Moreover, at fixed (R, k), the real parts of the
eigenvalues grow less than 1 % with γa . The minor influence of γa can be explained
as follows. In non-dimensional units, the diffusion time of the temperature and the
concentration field are 1 and 1/L = 100, whereas the time scale γa of the velocity
field is at least by a factor 104 smaller and thus can be neglected. The case that γa

has the same order of magnitude as the diffusion time of the temperature or the
concentration field is rather unusual and lies beyond the scope of this work.

Further research turned out to be difficult. For larger values of ψ , the boundaries
did not converge when increasing the number of modes in our model up to N = 40,
the largest model we used. For large values of φ∗, we find the OCR boundary in a
large R range, while for small values of φ∗ the CR boundary seems not to be a closed
curve any longer.

5. Conclusion
We studied theoretically the roll convection of pure fluids and binary mixtures

in the Rayleigh–Bénard system with a porous medium using a Galerkin method.
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The Soret effect was taken into account whereas we restricted the investigations to
mixtures of positive separation ratio.

The state of convection has been investigated qualitatively in terms of the
streamlines as well as the structure of the temperature and concentration field and
quantitatively in terms of the Nusselt number and the mixing number. Whereas
the behaviour of the Nusselt and mixing number as well as the behaviour of the
temperature and concentration field resembles the situation in the clear fluid case,
the behaviour of the streamlines was found to be different. In the Soret regime, the
streamlines were deformed since the concentration field transferred its anharmonicity
via the buoyancy term into the velocity field. For the clear fluid, this deformation
is smoothed by the ∇2 operator in the diffusion term. However, for a fluid in a
porous medium, the diffusion term is replaced by a relaxation term in the momentum
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balance equation deduced from Darcy’s law such that the deformation persists. At
the transition to the Rayleigh regime, the deformation diminishes since form there
on the buoyancy force is generated rather by the harmonic temperature field than by
the anharmonic concentration field.

Also, we investigated the stability of rolls against arbitrary infinitesimal
perturbations. The stability region for a pure fluid was found to be restricted by
the ZZ instability and the CR instability only, which is in qualitative agreement with
the one of Straus (1974). However, compared with Straus (1974), our stability balloon
is more restrictive on the small-k side and the highest R for which rolls should be
stable against infinitesimal perturbation is calculated to about 342 instead of 380
stated by Straus.

In the next step, we extended the stability analysis to binary mixtures with ψ > 0.
For not too small Lewis numbers (L � 0.1), the ZZ and the CR instability mechanisms
were found again to be the only relevant mechanisms. The corresponding stability
boundaries changed similar to the clear fluid case. In the Rayleigh regime, the ZZ
boundary was shifted slightly to smaller k when we increased ψ and bent towards
smaller k at the transition to the Soret regime. The CR boundary was found to be
detached from the neutral curve for sufficiently large ψ . Moreover, the CR stable
region shrinked for growing separation ratio. Thus, for example, we found no stable
rolls for ψ � 0.5 and L =0.1.

For small Lewis numbers, such as L = 0.01, we observed a change in the behaviour
of the CR boundary. For strong thermal driving, the critical eigenvalue corresponding
to the CR boundary becomes complex. Therefore, the boundary changes to an
oscillatory one. Up to now, this phenomenon has not been observed in the clear
fluid system. The point at which the boundary changes from stationary to oscillatory
is dependent of ψ and φ∗. When φ∗ becomes small enough, the CR boundary is
stationary for all values of R. Further research for larger ψ turned out to be difficult
because the computed boundaries did not converge. For ψ = 0.1, we found that the
CR boundary becomes oscillatory in a larger R range and that the stationary CR
boundary does not seem to form a closed curve any longer.

Motivated by the work of Vadasz (for example Vadasz & Olek 1999), we retained
the time derivative in the momentum balance provided with the correction factor
γa . Whereas this term was essential in the stability analyses of Vadasz, we did not
observe any noteworthy influence on our results as γa was varied in the range from
0 to 10−4.
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Barten, W., Lücke, M., Kamps, M. & Schmitz, R. 1995 Convection in binary fluid mixtures.
I. Extended travelling-wave and stationary states. Phys. Rev. E 51 (6), 5636–5661.

Bolton, E. W. & Busse, F. H. 1985 Stability of convection rolls in a layer with stress-free boundaries.
J. Fluid Mech. 150, 487–498.

Bolton, E. W., Busse, F. H. & Clever, R. M. 1986 Oscillatory instabilities of convection rolls at
intermediate Prandtl numbers. J. Fluid Mech. 164, 469–485.

Busse, F. H. & Clever, R. M. 1979 Instabilities of convection rolls in a fluid of moderate Prandtl
number. J. Fluid Mech. 91, 319–335.



Roll convection of binary fluid mixtures in porous media 185

Busse, F. H. & Whitehead, J. A. 1971 Instabilities of convection rolls in a high Prandtl number
fluid. J. Fluid Mech. 47, 305–320.

Charrier-Mojtabi, M.-C., Elhajjar, B. & Mojtabi, A. 2007 Analytical and numerical stability
analysis of Soret-driven convection in a horizontal porous layer. Phys. Fluids 19 (12), 124104.

Clever, R. M. & Busse, F. H. 1990 Convection at very low Prandtl numbers. Phys. Fluids 2 (3),
334–339.

Croquette, V. & Williams, H. 1989 Nonlinear competition between waves on convective rolls.
Phys. Rev. A 39 (5), 2765–2768.

Cross, M. C. & Kim, K. 1988 Linear instability and the codimension-2 region in binary fluid
convection between rigid impermeable boundaries. Phys. Rev. A 37 (10), 3909–3920.
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